Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 422
Filtrar
1.
Mar Drugs ; 22(4)2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38667758

RESUMEN

Nemertean worms contain toxins that are used to paralyze their prey and to deter potential predators. Hoplonemerteans often contain pyridyl alkaloids like anabaseine that act through nicotinic acetylcholine receptors and crustacean chemoreceptors. The chemical reactivity of anabaseine, the first nemertean alkaloid to be identified, has been exploited to make drug candidates selective for alpha7 subtype nAChRs. GTS-21, a drug candidate based on the anabaseine scaffold, has pro-cognitive and anti-inflammatory actions in animal models. The circumpolar chevron hoplonemertean Amphiporus angulatus contains a multitude of pyridyl compounds with neurotoxic, anti-feeding, and anti-fouling activities. Here, we report the isolation and structural identification of five new compounds, doubling the number of pyridyl alkaloids known to occur in this species. One compound is an isomer of the tobacco alkaloid anatabine, another is a unique dihydroisoquinoline, and three are analogs of the tetrapyridyl nemertelline. The structural characteristics of these ten compounds suggest several possible pathways for their biosynthesis.


Asunto(s)
Alcaloides , Isoquinolinas , Animales , Alcaloides/farmacología , Alcaloides/química , Alcaloides/aislamiento & purificación , Isoquinolinas/farmacología , Isoquinolinas/química , Isoquinolinas/aislamiento & purificación , Invertebrados/química , Piridinas/farmacología , Piridinas/química , Piridinas/aislamiento & purificación , Receptores Nicotínicos/metabolismo , Receptores Nicotínicos/efectos de los fármacos , Estructura Molecular
2.
Toxins (Basel) ; 16(4)2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38668611

RESUMEN

Nemerteans, or ribbon worms, possess tetrodotoxin and its analogues (TTXs), neurotoxins of bacterial origin, which they presumably use for capturing prey and self-defense. Most TTXs-containing nemertean species have low levels of these toxins and, therefore, have usually been neglected in studies of TTXs functions and accumulation. In the present study, Kulikovia alborostrata and K. manchenkoi, two closely related species, were analyzed for TTXs distribution in the body using the HPLC-MS/MS and fluorescence microscopy methods. The abundance of TTXs-positive cells was determined in the proboscis, integument, and digestive system epithelium. As a result, six TTXs-positive cell types were identified in each species; however, only four were common. Moreover, the proportions of the toxins in different body parts were estimated. According to the HPLC-MS/MS analysis, the TTXs concentrations in K. alborostrata varied from 0.91 ng/g in the proboscis to 5.52 ng/g in the precerebral region; in K. manchenkoi, the concentrations ranged from 7.47 ng/g in the proboscis to 72.32 ng/g in the posterior body region. The differences observed between the two nemerteans in the distribution of the TTXs were consistent with the differences in the localization of TTXs-positive cells. In addition, TTXs-positive glandular cell types were found in the intestine and characterized for the first time. TTXs in the new cell types were assumed to play a unique physiological role for nemerteans.


Asunto(s)
Tetrodotoxina , Animales , Tetrodotoxina/toxicidad , Tetrodotoxina/metabolismo , Tetrodotoxina/análisis , Japón , Espectrometría de Masas en Tándem , Invertebrados/química , Invertebrados/metabolismo , Bahías , Cromatografía Líquida de Alta Presión , Monitoreo del Ambiente
3.
Mar Drugs ; 21(10)2023 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-37888438

RESUMEN

Marine invertebrates constantly interact with a wide range of microorganisms in their aquatic environment and possess an effective defense system that has enabled their existence for millions of years. Their lack of acquired immunity sets marine invertebrates apart from other marine animals. Invertebrates could rely on their innate immunity, providing the first line of defense, survival, and thriving. The innate immune system of marine invertebrates includes various biologically active compounds, and specifically, antimicrobial peptides. Nowadays, there is a revive of interest in these peptides due to the urgent need to discover novel drugs against antibiotic-resistant bacterial strains, a pressing global concern in modern healthcare. Modern technologies offer extensive possibilities for the development of innovative drugs based on these compounds, which can act against bacteria, fungi, protozoa, and viruses. This review focuses on structural peculiarities, biological functions, gene expression, biosynthesis, mechanisms of antimicrobial action, regulatory activities, and prospects for the therapeutic use of antimicrobial peptides derived from marine invertebrates.


Asunto(s)
Péptidos Antimicrobianos , Invertebrados , Animales , Invertebrados/química , Organismos Acuáticos/química , Péptidos/farmacología , Péptidos/metabolismo , Antibacterianos/farmacología , Antibacterianos/metabolismo , Bacterias
4.
Environ Sci Pollut Res Int ; 30(38): 89293-89310, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37452243

RESUMEN

The dyke system plays a vital role in cultivating rice intensively in the Vietnamese Mekong Delta, which protects rice paddy fields from annual floods. This study aimed to examine whether the full-dyke system (FD, which restricts water exchange for a long time) can cause degradation of surface water quality and reduction in benthic invertebrate biodiversity. The surface water quality and benthic invertebrate community were compared between the FD and semi-dyke systems (SD, which permits water exchange during flooding season) using a large number of samples collected seasonally in 2019. The results showed that the surface water quality within the FD system had significantly higher concentrations of TSS, COD, BOD5, N-NO3-, N-TKN, P-PO43-, and TP than compared to the SD system (p < 0.05), indicating greater pollution levels. The benthic invertebrate community was less diverse in the FD system than in the SD system. Only 17 species (belonging to 4 families) were detected in the FD system, and 30 species (belonging to 5 families) were detected in the SD system. The benthic invertebrate community structure changes and biodiversity loss were associated with degraded water quality. The P-PO43- and TP parameters were negatively correlated with the number of species, density, and biomass in the FD system and with the Shannon-Wiener (H') index in the SD system. In conclusion, the FD system has been degrading water quality and causing biodiversity loss.


Asunto(s)
Invertebrados , Ríos , Humanos , Animales , Vietnam , Ríos/química , Invertebrados/química , Calidad del Agua , Biodiversidad
5.
Mar Drugs ; 20(10)2022 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-36286440

RESUMEN

Microbe-invertebrate associations, commonly occurring in nature, play a fundamental role in the life of symbionts, even in hostile habitats, assuming a key importance for both ecological and evolutionary studies and relevance in biotechnology. Extreme environments have emerged as a new frontier in natural product chemistry in the search for novel chemotypes of microbial origin with significant biological activities. However, to date, the main focus has been microbes from sediment and seawater, whereas those associated with biota have received significantly less attention. This review has been therefore conceived to summarize the main information on invertebrate-bacteria associations that are established in extreme marine environments. After a brief overview of currently known extreme marine environments and their main characteristics, a report on the associations between extremophilic microorganisms and macrobenthic organisms in such hostile habitats is provided. The second part of the review deals with biotechnologically relevant bioactive molecules involved in establishing and maintaining symbiotic associations.


Asunto(s)
Productos Biológicos , Invertebrados , Animales , Invertebrados/química , Bacterias , Ambientes Extremos , Agua de Mar/microbiología , Productos Biológicos/farmacología , Productos Biológicos/química
6.
Acta Pharmacol Sin ; 43(12): 3062-3079, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36104434

RESUMEN

Marine organisms often produce a variety of metabolites with unique structures and diverse biological activities that enable them to survive and struggle in the extremely challenging environment. During the last two decades, our group devoted great effort to the discovery of pharmaceutically interesting lead compounds from South China Sea marine plants and invertebrates. We discovered numerous marine secondary metabolites spanning a wide range of structural classes, various biosynthetic origins and various aspects of biological activities. In a series of reviews, we have summarized the bioactive natural products isolated from Chinese marine flora and fauna found during 2000-2012. The present review provides an updated summary covering our latest research progress and development in the last decade (2012-2022) highlighting the discovery of over 400 novel marine secondary metabolites with promising bioactivities from South China Sea marine organisms.


Asunto(s)
Productos Biológicos , Invertebrados , Animales , Invertebrados/química , Productos Biológicos/química , China
7.
Mol Biol Rep ; 49(10): 9797-9811, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35716292

RESUMEN

Invertebrates are a significant source of antimicrobial peptides because they lack an adaptive immune system and must rely on their innate immunity to survive in a pathogen-infested environment. Various antimicrobial peptides that represent major components of invertebrate innate immunity have been described in a number of investigations over the last few decades. In freshwater invertebrates, antimicrobial peptides have been identified in arthropods, annelids, molluscs, crustaceans, and cnidarians. Freshwater invertebrate species contain antimicrobial peptides from the families astacidin, macin, defensin, and crustin, as well as other antimicrobial peptides that do not belong to these families. They show broad spectrum activities greatly directed against bacteria and to a less extent against fungi and viruses. This review focuses on antimicrobial peptides found in freshwater invertebrates, highlighting their features, structure-activity connections, antimicrobial processes, and possible applications in the food industry, animal husbandry, aquaculture, and medicine. The methods for their synthesis, purification, and characterization, as well as the obstacles and strategies for their development and application, are also discussed.


Asunto(s)
Antiinfecciosos , Péptidos Antimicrobianos , Animales , Antiinfecciosos/farmacología , Defensinas , Agua Dulce , Inmunidad Innata , Invertebrados/química
8.
Mar Drugs ; 20(3)2022 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-35323469

RESUMEN

Collagen is the main fibrous structural protein in the extracellular matrix and connective tissue of animals [...].


Asunto(s)
Organismos Acuáticos/química , Colágeno , Animales , Invertebrados/química
9.
J Antibiot (Tokyo) ; 75(4): 213-225, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35091665

RESUMEN

Screening of a marine derived crude natural product extract library, followed by bioactivity guided fractionation, has led to isolation and structural elucidation of 10 natural products as hits active against Mycobacterium tuberculosis (Mtb). Among them, three (3, 4 and 5) were identified for the first time and the remaining 7 compounds (1, 2, 6, 7, 8, 9 and 10) were previously reported, but now assigned with anti-mycobacterial activity. Among identified hits, the oligo cyclic depsipeptide discodermin B (7) exhibited the highest potency with an MIC90 value of 0.5 µM. The polysufide alkaloid lissoclinotoxin F (1) displayed a good balance of anti Mtb potency (MIC90 = 2.6 µM) and selectivity (SI = 19 in HEK293 cells). Lissoclinotoxin F (1) was found to be active against intracellular Mtb as well as non-replicating forms of Mtb, with higher activity against Mtb compared to other gram-negative and gram-positive bacteria. Consequently, lissoclinotoxin F (1) could be used as a lead compound for development of new TB drugs. Details regarding screening techniques, structural elucidation and preliminary structural activity relationships (SAR) of the isolated hits are discussed.


Asunto(s)
Antituberculosos , Invertebrados , Mycobacterium tuberculosis , Animales , Antituberculosos/química , Células HEK293 , Humanos , Invertebrados/química , Pruebas de Sensibilidad Microbiana
10.
Mass Spectrom Rev ; 41(6): 945-963, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-33955035

RESUMEN

The approaches for analysis of N-glycans have radically altered in the last 20 years or so. Due to increased sensitivity, mass spectrometry has become the predominant method in modern glycomics. Here, we summarize recent studies showing that the improved resolution and detection by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) has contributed greatly to the discovery of a large range of anionic and zwitterionic N-glycan structures across the different kingdoms of life, whereby MALDI-TOF MS in negative mode is less widely performed than in positive mode. However, its use enables the detection of key fragments indicative of certain sugar modifications such as sulfate, (methyl) phosphate, phosphoethanolamine, (methyl)aminoethylphosphonate, glucuronic, and sialic acid, thereby enabling certain isobaric glycan variations to be distinguished. As we also discuss in this review, complementary approaches such as negative-mode electrospray ionization-MS/MS, Fourier-transform ion cyclotron resonance MS, and ion mobility MS yield, respectively, cross-linkage fragments, high accuracy masses, and isomeric information, thus adding other components to complete the jigsaw puzzle when defining unusual glycan modifications from lower organisms.


Asunto(s)
Ácido N-Acetilneuramínico , Espectrometría de Masas en Tándem , Animales , Invertebrados/química , Fosfatos , Polisacáridos/química , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Azúcares , Sulfatos
11.
Mar Drugs ; 19(9)2021 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-34564156

RESUMEN

Tetrodotoxin (TTX) is a potent neurotoxin found in many marine and terrestrial animals, but only a few species, such as the ribbon worms of the genus Cephalothrix, accumulate it in extremely high concentrations. The intrabody distribution of TTX in highly toxic organisms is of great interest because it helps researchers to understand the pathways by which the toxin migrates, accumulates, and functions in tissues. Using immunohistochemistry with anti-TTX antibodies, the authors of this study investigated the toxin's distribution inside the organs, tissues, and cells of Cephalothrix cf. simula. The cell types of TTX-positive tissues were identified by light microscopy. The main sites of TTX accumulation occurred in the secretory cells of the integuments, the microvilli of the epidermal ciliary cells, cephalic glands, the glandular epithelia of the proboscises, the enterocytes of the digestive systems, and nephridia. Obtained data suggest the toxin migrates from the digestive system through blood vessels to target organs. TTX is excreted from the body through the nephridia and mucus of epidermal cells.


Asunto(s)
Invertebrados/anatomía & histología , Invertebrados/química , Toxinas Marinas/análisis , Tetrodotoxina/análisis , Animales , Anélidos
12.
J Nat Prod ; 84(8): 2121-2128, 2021 08 27.
Artículo en Inglés | MEDLINE | ID: mdl-34445875

RESUMEN

Peptide toxins find use in medicine, biotechnology, and agriculture. They are exploited as pharmaceutical tools, particularly for the investigation of ion channels. Here, we report the synthesis and activity of a novel family of peptide toxins: the cystine-knotted α nemertides. Following the prototypic α-1 and -2 (1 and 2), six more nemertides were discovered by mining of available nemertean transcriptomes. Here, we describe their synthesis using solid phase peptide chemistry and their oxidative folding by using an improved protocol. Nemertides α-2 to α-7 (2-7) were produced to characterize their effect on voltage-gated sodium channels (Blatella germanica BgNaV1 and mammalian NaVs1.1-1.8). In addition, ion channel activities were matched to in vivo tests using an Artemia microwell assay. Although nemertides demonstrate high sequence similarity, they display variability in activity on the tested NaVs. The nemertides are all highly toxic to Artemia, with EC50 values in the sub-low micromolar range, and all manifest preference for the insect BgNaV1 channel. Structure-activity relationship analysis revealed key residues for NaV-subtype selectivity. Combined with low EC50 values (e.g., NaV1.1: 7.9 nM (α-6); NaV1.3: 9.4 nM (α-5); NaV1.4: 14.6 nM (α-4)) this underscores the potential utility of α-nemertides for rational optimization to improve selectivity.


Asunto(s)
Péptidos/farmacología , Toxinas Biológicas/farmacología , Bloqueadores del Canal de Sodio Activado por Voltaje/farmacología , Secuencia de Aminoácidos , Animales , Artemia/efectos de los fármacos , Cucarachas , Invertebrados/química , Pliegue de Proteína , Estructura Terciaria de Proteína , Relación Estructura-Actividad , Canales de Sodio Activados por Voltaje
13.
Mar Drugs ; 19(6)2021 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-34205074

RESUMEN

This review focuses on the rare group of carbon-bridged steroids (CBS) and triterpenoids found in various natural sources such as green, yellow-green, and red algae, marine sponges, soft corals, ascidians, starfish, and other marine invertebrates. In addition, this group of rare lipids is found in amoebas, fungi, fungal endophytes, and plants. For convenience, the presented CBS and triterpenoids are divided into four groups, which include: (a) CBS and triterpenoids containing a cyclopropane group; (b) CBS and triterpenoids with cyclopropane ring in the side chain; (c) CBS and triterpenoids containing a cyclobutane group; (d) CBS and triterpenoids containing cyclopentane, cyclohexane or cycloheptane moieties. For the comparative characterization of the antitumor profile, we have added several semi- and synthetic CBS and triterpenoids, with various additional rings, to identify possible promising sources for pharmacologists and the pharmaceutical industry. About 300 CBS and triterpenoids are presented in this review, which demonstrate a wide range of biological activities, but the most pronounced antitumor profile. The review summarizes biological activities both determined experimentally and estimated using the well-known PASS software. According to the data obtained, two-thirds of CBS and triterpenoids show moderate activity levels with a confidence level of 70 to 90%; however, one third of these lipids demonstrate strong antitumor activity with a confidence level exceeding 90%. Several CBS and triterpenoids, from different lipid groups, demonstrate selective action on different types of tumor cells such as renal cancer, sarcoma, pancreatic cancer, prostate cancer, lymphocytic leukemia, myeloid leukemia, liver cancer, and genitourinary cancer with varying degrees of confidence. In addition, the review presents graphical images of the antitumor profile of both individual CBS and triterpenoids groups and individual compounds.


Asunto(s)
Antineoplásicos/farmacología , Productos Biológicos/farmacología , Carcinogénesis/efectos de los fármacos , Esteroides/farmacología , Triterpenos/farmacología , Animales , Antineoplásicos/química , Apoptosis/efectos de los fármacos , Organismos Acuáticos/química , Productos Biológicos/química , Carbono/química , Proliferación Celular/efectos de los fármacos , Chlorophyta/química , Cicloparafinas/química , Cicloparafinas/farmacología , Hongos/química , Humanos , Invertebrados/química , Metabolismo de los Lípidos/efectos de los fármacos , Rhodophyta/química , Esteroides/química , Triterpenos/química
14.
PLoS One ; 16(6): e0251893, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34086700

RESUMEN

Coarse woody debris (CWD) is an important component in forests, hosting a variety of organisms that have critical roles in nutrient cycling and carbon (C) storage. We developed a process-based model using literature, field observations, and expert knowledge to assess woody debris decomposition in forests and the movement of wood C into the soil and atmosphere. The sensitivity analysis was conducted against the primary ecological drivers (wood properties and ambient conditions) used as model inputs. The analysis used eighty-nine climate datasets from North America, from tropical (14.2° N) to boreal (65.0° N) zones, with large ranges in annual mean temperature (26.5°C in tropical to -11.8°C in boreal), annual precipitation (6,143 to 181 mm), annual snowfall (0 to 612 kg m-2), and altitude (3 to 2,824 m above mean see level). The sensitivity analysis showed that CWD decomposition was strongly affected by climate, geographical location and altitude, which together regulate the activity of both microbial and invertebrate wood-decomposers. CWD decomposition rate increased with increments in temperature and precipitation, but decreased with increases in latitude and altitude. CWD decomposition was also sensitive to wood size, density, position (standing vs downed), and tree species. The sensitivity analysis showed that fungi are the most important decomposers of woody debris, accounting for over 50% mass loss in nearly all climatic zones in North America. The model includes invertebrate decomposers, focusing mostly on termites, which can have an important role in CWD decomposition in tropical and some subtropical regions. The role of termites in woody debris decomposition varied widely, between 0 and 40%, from temperate areas to tropical regions. Woody debris decomposition rates simulated for eighty-nine locations in North America were within the published range of woody debris decomposition rates for regions in northern hemisphere from 1.6° N to 68.3° N and in Australia.


Asunto(s)
Madera/química , Animales , Australia , Carbono/química , Clima , Bosques , Hongos/química , Invertebrados/química , América del Norte , Suelo/química , Temperatura , Árboles/química
15.
Molecules ; 26(7)2021 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-33916461

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent for the COVID-19 pandemic, which generated more than 1.82 million deaths in 2020 alone, in addition to 83.8 million infections. Currently, there is no antiviral medication to treat COVID-19. In the search for drug leads, marine-derived metabolites are reported here as prospective SARS-CoV-2 inhibitors. Two hundred and twenty-seven terpene natural products isolated from the biodiverse Red-Sea ecosystem were screened for inhibitor activity against the SARS-CoV-2 main protease (Mpro) using molecular docking and molecular dynamics (MD) simulations combined with molecular mechanics/generalized Born surface area binding energy calculations. On the basis of in silico analyses, six terpenes demonstrated high potency as Mpro inhibitors with ΔGbinding ≤ -40.0 kcal/mol. The stability and binding affinity of the most potent metabolite, erylosides B, were compared to the human immunodeficiency virus protease inhibitor, lopinavir. Erylosides B showed greater binding affinity towards SARS-CoV-2 Mpro than lopinavir over 100 ns with ΔGbinding values of -51.9 vs. -33.6 kcal/mol, respectively. Protein-protein interactions indicate that erylosides B biochemical signaling shares gene components that mediate severe acute respiratory syndrome diseases, including the cytokine- and immune-signaling components BCL2L1, IL2, and PRKC. Pathway enrichment analysis and Boolean network modeling were performed towards a deep dissection and mining of the erylosides B target-function interactions. The current study identifies erylosides B as a promising anti-COVID-19 drug lead that warrants further in vitro and in vivo testing.


Asunto(s)
Invertebrados/química , SARS-CoV-2/metabolismo , Terpenos/química , Proteínas de la Matriz Viral/antagonistas & inhibidores , Animales , Sitios de Unión , COVID-19/virología , Humanos , Enlace de Hidrógeno , Invertebrados/metabolismo , Lopinavir/química , Lopinavir/metabolismo , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Inhibidores de Proteasas/química , Inhibidores de Proteasas/aislamiento & purificación , Inhibidores de Proteasas/uso terapéutico , Unión Proteica , SARS-CoV-2/aislamiento & purificación , Terpenos/aislamiento & purificación , Terpenos/metabolismo , Terpenos/uso terapéutico , Termodinámica , Proteínas de la Matriz Viral/metabolismo , Tratamiento Farmacológico de COVID-19
16.
FEBS Open Bio ; 11(3): 793-803, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33448656

RESUMEN

For marine invertebrates with no adaptive immune system, ferritin is a major intracellular iron-storage protein with a critical role in innate immunity. Here, we present the crystal structures of two novel ferritins [Fer147 and Phascolosoma esculenta ferritin (PeFer)] from the marine invertebrate P. esculenta, which resides in muddy-bottom coastal regions. Fer147 and PeFer exhibit the 4-3-2 symmetry of cage-like hollow shells containing 24 subunits, similar to other known ferritins. Fer147 and PeFer contain both the conserved ferroxidase center and threefold channels. Subtle structural differences in the putative nucleation sites suggest possible routes of metal ion movement in the protein shells. However, the marked variation in the electrostatic potential of the threefold channels in Fer147 and the fourfold channels in PeFer suggests significant diversity between Fer147 and PeFer in terms of metal ion aggregation and cation exclusion. In summary, the presented crystal structures may serve as references for studies of the iron-storage mechanism of additional ferritins from marine invertebrates.


Asunto(s)
Ferritinas/química , Ferritinas/genética , Invertebrados/metabolismo , Animales , Organismos Acuáticos/química , Organismos Acuáticos/genética , Organismos Acuáticos/metabolismo , Dicroismo Circular , Clonación Molecular , Invertebrados/química , Invertebrados/genética , Modelos Moleculares , Conformación Proteica
17.
Nat Prod Rep ; 38(3): 586-667, 2021 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-33021301

RESUMEN

Covering: 2017-2019Guanidine natural products isolated from microorganisms, marine invertebrates and terrestrial plants, amphibians and spiders, represented by non-ribosomal peptides, guanidine-bearing polyketides, alkaloids, terpenoids and shikimic acid derived, are the subject of this review. The topics include the discovery of new metabolites, total synthesis of natural guanidine compounds, biological activity and mechanism-of-action, biosynthesis and ecological functions.


Asunto(s)
Anuros/metabolismo , Bacterias/metabolismo , Productos Biológicos/química , Hongos/metabolismo , Guanidinas/metabolismo , Animales , Organismos Acuáticos/química , Organismos Acuáticos/metabolismo , Bacterias/química , Bacterias/genética , Productos Biológicos/metabolismo , Hongos/química , Invertebrados/química , Invertebrados/metabolismo , Estructura Molecular , Plantas/química , Plantas/metabolismo , Saxitoxina/química , Saxitoxina/metabolismo , Metabolismo Secundario , Arañas/química , Arañas/metabolismo , Tetrodotoxina/química , Tetrodotoxina/metabolismo
18.
Curr Pharm Biotechnol ; 21(14): 1444-1450, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32744967

RESUMEN

BACKGROUND: Lectins are class of proteins characterized by their ability to selectively bind carbohydrate moieties of glycoproteins. Many invertebrate lectins, especially derived from hemolymph, are being purified, and yet their functions and medical applications are subjects of major interest. METHODS: Hemolymph lectins in invertebrates play a major role in protecting against many pathogens and microbes. Further, many hemolymph lectins show anticancer properties towards various cancer cell lines, which expresses globotriaosyl ceramides on their cell surface. RESULTS: These vast repertoires of hemolymph lectins in recognizing and inhibiting the growth of various harmful microbes and cancerous cells have spurred the biochemist to use them in histochemical and cytochemical studies. CONCLUSION: The present review will address the biological roles and biomedical applications of hemolymph lectin.


Asunto(s)
Antibacterianos/farmacología , Antineoplásicos/farmacología , Investigación Biomédica , Hemolinfa/química , Invertebrados/química , Lectinas/farmacología , Animales , Antibacterianos/aislamiento & purificación , Antineoplásicos/aislamiento & purificación , Línea Celular Tumoral , Hemolinfa/metabolismo , Humanos , Inmunidad Innata/efectos de los fármacos , Invertebrados/inmunología , Lectinas/aislamiento & purificación
19.
Mol Biol Rep ; 47(9): 7209-7228, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32797349

RESUMEN

Marine invertebrates are extremely diverse, largely productive, untapped oceanic resources with chemically unique bioactive lead compound contributing a wide range of screening for the discovery of anticancer compounds. The lead compounds have unfurled an extensive array of pharmacological properties owing to the presence of polyphenols, alkaloids, terpenoids and other secondary metabolites. The antioxidant, immunomodulatory and anti-tumor activities exhibited, are possibly regulated by the apoptosis induction, scavenging of ROS and modulation of cellular signaling pathways to defy the cellular deafness during carcinogenesis. Despite the enriched bioactive compounds, the marine invertebrates are largely unexplored as identification, screening, pre-clinical and clinical assessment of lead compounds and their synthetic analogs remain a major task to be solved. In the current review, we focus on the principle strategy and underlying mechanisms deployed by the bioactive anticancer compounds derived from marine invertebrates to combat cancer with special insight into the cell death mechanism.


Asunto(s)
Antineoplásicos , Organismos Acuáticos/química , Invertebrados/química , Neoplasias , Animales , Antineoplásicos/química , Antineoplásicos/uso terapéutico , Muerte Celular/efectos de los fármacos , Humanos , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Neoplasias/patología
20.
Biomed Pharmacother ; 129: 110484, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32768966

RESUMEN

Cancer is a disease characterized by overproliferation, including that due to transformation, apoptosis disorders, proliferation, invasion, angiogenesis and metastasis, and is one of the deadliest diseases. Currently, conservative chemotherapy is used for cancer treatment due to a lack of effective drugs. The PI3K/Akt signaling pathway plays a very essential role in the pathogenesis of many cancers, and abnormal activation of this pathway leads to abnormal expression of a series of downstream proteins, which ultimately results in the excessive proliferation of cancer cells. Therefore, the PI3K/Akt signaling pathway is a critical target in cancer treatment. Marine drugs have attracted much attention in recent years, and studies have found that many extracts from oceanic animals, plants and microorganisms or their metabolites exert antitumor effects, including antiproliferative effects or the induction of cell cycle arrest, apoptosis or autophagy. However, most anticancer targets and the mechanisms of marine compounds remain unclear. The great potential of the development of marine drugs provides a new direction for cancer treatment. This review focuses on marine compounds that target the PI3K/Akt signaling pathway for the prevention and treatment of cancer and provides comprehensive information for those interested in research on marine drugs.


Asunto(s)
Antineoplásicos/uso terapéutico , Neoplasias/tratamiento farmacológico , Fosfatidilinositol 3-Quinasa/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal/efectos de los fármacos , Animales , Antineoplásicos/aislamiento & purificación , Organismos Acuáticos/química , Bacterias/química , Humanos , Invertebrados/química , Terapia Molecular Dirigida , Neoplasias/enzimología , Neoplasias/patología , Océanos y Mares , Microbiología del Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...